Single chromatin fiber stretching reveals physically distinct populations of disassembly events.

نویسندگان

  • L H Pope
  • M L Bennink
  • K A van Leijenhorst-Groener
  • D Nikova
  • J Greve
  • J F Marko
چکیده

Eukaryotic DNA is packaged into the cell nucleus as a nucleoprotein complex, chromatin. Despite this condensed state, access to the DNA sequence must occur during gene expression and other essential genetic events. Here we employ optical tweezers stretching of reconstituted chromatin fibers to investigate the release of DNA from its protein-bound structure. Analysis of fiber length increase per unbinding event revealed discrete values of approximately 30 and approximately 60 nm. Furthermore, a loading rate analysis of the disruption forces revealed three individual energy barriers. The heights of these barriers were found to be approximately 20 k(B)T, approximately 25 k(B)T, and approximately 28 k(B)T. For subsequent stretches of the fiber it was found that events corresponding to the approximately 28 k(B)T energy barrier were significantly reduced. No correlation between energy barrier crossed and DNA length release was found. These studies clearly demonstrate that optical tweezers stretching of chromatin provides insight into the energetic penalties imposed by chromatin structure. Furthermore these studies reveal possible pathways via which chromatin may be disrupted during genetic code access.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assembly of single chromatin fibers depends on the tension in the DNA molecule: magnetic tweezers study.

We have used magnetic tweezers to study in real time chaperone-mediated chromatin assembly/disassembly at the level of single chromatin fibers. We find a strong dependence of the rate of assembly on the exerted force, with strong inhibition of assembly at forces exceeding 10 pN. During assembly, and especially at higher forces, occasional abrupt increases in the length of the fiber were observe...

متن کامل

Chromatin Degradation in Differentiating Fiber Cells of the Eye Lens

During development, the lens of the eye becomes transparent, in part because of the elimination of nuclei and other organelles from the central lens fiber cells by an apoptotic-like mechanism. Using confocal microscopy we showed that, at the border of the organelle-free zone (OFZ), fiber cell nuclei became suddenly irregular in shape, with marginalized chromatin. Subsequently, holes appeared in...

متن کامل

Histone H1 compacts DNA under force and during chromatin assembly

Histone H1 binds to linker DNA between nucleosomes, but the dynamics and biological ramifications of this interaction remain poorly understood. We performed single-molecule experiments using magnetic tweezers to determine the effects of H1 on naked DNA in buffer or during chromatin assembly in Xenopus egg extracts. In buffer, nanomolar concentrations of H1 induce bending and looping of naked DN...

متن کامل

In silicio stretching of chromatin

We present Monte-Carlo (MC) simulations of the stretching of a single 30 nm chromatin fiber. The model approximates the DNA by a flexible polymer chain with Debye-Hückel electrostatics and uses a two-angle zig-zag model for the geometry of the linker DNA connecting the nucleosomes. The latter are represented by flat disks interacting via an attractive Gay-Berne potential. Our results show that ...

متن کامل

Stretching single fibrin fibers hampers their lysis.

Blood clots, whose main structural component is a mesh of microscopic fibrin fibers, experience mechanical strain from blood flow, clot retraction and interactions with platelets and other cells. We developed a transparent, striated and highly stretchable substrate made from fugitive glue (a styrenic block copolymer) to investigate how mechanical strain affects lysis of single, suspended fibrin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 88 5  شماره 

صفحات  -

تاریخ انتشار 2005